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A NON-REFLEXIVE GROTHENDIECK 
SPACE THAT DOES NOT CONTAIN L 

BY 

RICHARD HAYDON 

ABSTRACT 

A compact space S is constructed such that, in the dual Banach space qg(S)*, 
every weak* convergent sequence is weakly convergent, while qg(S) does not 
have a subspace isomorphic to I~. The construction introduces a weak version of 
completeness for Boolean algebras, here called the Subsequential Complete- 
ness Property. A related construction leads to a counterexample to a conjecture 
about holomorphic functions on Banach spaces. A compact space T is 
constructed such that qg(T) does not contain I~ but does have a "bounding" 
subset that is not relatively compact. The first of the examples was presented at 
the International Conference on Banach spaces, Kent, Ohio, 1979. 

1. A Grothendieck space 

A Banach space X is called a Grothendieck space if every weak* convergent 

sequence in the dual space X* is also weakly convergent. The best known 

examples of non-reflexive Grothendieck spaces are the spaces ~(S), where S is 

compact and extremally disconnected, or, more generally, where S is an F-space 
[9]. It is known that such spaces ~r contain isometric copies of l~ (subject to 

the Continuum Hypothesis, in the case of F-spaces), and the question has been 
raised (for instance, on page 180 of [1]) of whether every non-reflexive 
Grothendieck space has a subspace isomorphic to l| The construction given 
here shows that this is not the case. Since the space constructed is of the type 
qg(S), with S compact, it also answers negatively a question posed by PeJ'czy6ski 
(see also page 201 of [5]), whether every qg(S) space necessarily contains either l| 

or a complemented Co. A different counterexample to these conjectures has 

been found independently by M. Talagrand [11]. His construction depends on 

the Continuum Hypothesis, but the Grothendieck space ~r which he obtains 

has the stronger property that it does not have l| as a quotient (or, equivalently, 

thanks to CH, that it does not contain ll(tol) as a subspace). 
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The space S which we construct here will be obtained as the Stone space of a 

certain Boolean subalgebra 92 of ~oJ, the algebra of all subsets of the natural 

numbers. An account of the relationship between Boolean algebras and their 

Stone spaces may be found in w of [10], for example. However, it may be worth 

remarking that, once our subalgebra 9.;[ of ~oJ has been constructed, the Banach 

space we are interested in has a concrete realization, since cs can be identified 

with the closed linear span in L of the indicator functions of the elements of 92. 

When we are thinking of it in this way, we shall denote this space by Xa. We now 

start by introducing a piece of terminology for what will turn out to be the crucial 

property of our algebra. 

1A DEFINITION. We say that a Boolean algebra 92 has the Subsecluential 
Completeness Property if, whenever (A.).~,~ is a disjoint sequence in 92, there is 

an infinite subset M of ~o such that (As)m~M has a least upper bound in 9.  

In the case where 92 = 92(S), the algebra of all open and closed subsets of a 

totally disconnected compact space S (equivalent to saying that S is the Stone 

space of 92), the above property means that whenever (A.) is a disjoint sequence 

of open and closed sets, there is an infinite subset M of to such that the closure of 

Um~MAs is open in S. 

1B PROPOSn-ION. Let S be a totally disconnected compact space. If the algebra 
92(S) has the SCP then c~(S) is a Grothendieck space. 

PROOF. Let 0z.) be a weak* null sequence in c~(S)*. We have to show that 

R = {/x. : n E ~o} is weakly relatively compact, and to do this it will suffice to 

prove that if (As)sE. is a disjoint sequence in 92(S) then tz(Am)--~0 uniformly 

over ~ E R. (This version of the criterion for weak compactness may be found, 

for instance, as Theorem 83C of [3].) 

So let us suppose that (As) is a disjoint sequence in 92(S) and that 

~. (A.) _-> ~ > 0 for all n. We may also suppose, by Rosenthal's Lemma ([5], or 

page 18 of [1]), that for all n 

I/~. l( U{am :n~  m E ~}) <�89 

Now let ( O ' ( a ) ) a e , o  I be an uncountable almost disjoint family of subsets of o~. 

(Recall that "almost disjoint" means that o-(a) n ~r(/3) is finite whenever a ~/3.) 

For each a, choose an infinite subset r of o'(a) such that the closure of 

U.E,(~)A. is open; call these closures B.. Then the sets Ca = B, \  U.~,t~ 

are pairwise disjoint, and so there exists an ot such that Ilz. I(C~)=0 for all 

n E co. We now see that for all n E r 
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contradicting the assumption that g.--*0 in the weak* topology. 

REMARK. The Grothendieck Property for Boolean algebras has been consid- 

ered by a number of authors, who have also looked at other measure-theoretical 

properties in this context. A survey of this material can be found in [7]. With a 

little more work, one can show that a Boolean algebra with the SCP also enjoys 

the so-called "Vital i-Hahn-Saks Property". 

1C PROPOSITION. Let S be compact and suppose that L embeds isomorphically 
in c~(S). Then there is an infinite subset N of S such that [. n IC4 = 0 whenever 

L, M are disjoint subsets of N. If  T is a dense subset of S we may choose N to be 
contained in T. 

PROOF. The proof is almost entirely based on ideas from Rosenthal 's paper 

[6]. Let u : L--> ~(S)  be an embedding and assume that for all ~ E L we have 

I1 11----II II--- K II II. 
For each n ~ to choose s, E T such that [(ue,)(s,)[ >= 1, e. denoting the usual 

unit vector in L.  Consider the elements v, = u *(~(s, )) of (L)* as finitely additive 

measures on w. By an application of Rosenthal 's Lemma, there exists an infinite 

subset D of to such that, for all n E D, [ ~, [(D\{n}) <~. Put N = {s, : n ~ D} and 

let M = {s, : n ~ C} be any subset of N. Consider fc = u ( lc )  E cr We have 

J(ue.)(s . )+ v.(C,,/{n}) if n E C 
&(s.)  / 

I. v,(C) -if n ~ C. 

Thus, Ifc(so)l>  if n E C  and Ifc(so)l<' if n ~ C .  This assures us that 

n (N\M) = O. 

REMARK. The above Proposition shows that a necessary condition for L to 

embed in ~r is that S should have a subset homeomorphic to /3to, the 

Stone-t~ech compactification of the natural numbers. For if N is the subset of S 

constructed above, all indicator functions 1M (M _CN) extend to continuous 

functions on S, and hence/Q is homeomorphic to/3to. That this condition is not 

sufficient may be seen by taking S = { - 1, 1} 2̀~ and applying Hagler's results on 

subspaces of ~g(S) where S is dyadic [4]. 

We now come to the construction of our Boolean algebra, which will be 

achieved by transfinite induction, employing the following lemma. The author is 

grateful to the referee for suggesting a simplified proof. 
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1D LEMMA. Let 3" < 2 ~ be an ordinal and 92 be a Boolean subalgebra of ~to 
with I921 --< [ y I. Assume further that there is a family (Mo, No )o<, of pairs of 
subsets of to, with Mo C No for all [3, such that 

(1) M ~ N e A A  fora l lAE92 ,  [3<7 .  

Then, given any disjoint sequence (A , ) ,~ ,  in 92,1, there is an infinite subset ~r of to 
such that Mo ~ No N A for all [3 < 2/and all A in the algebra 92~ generated by 92 
and A~ = U , ~ A , .  

PROOF. Note first that, for each set B, the elements of the algebra generated 

by 92 and B have the form A U ( A ' O B ) U ( A " \ B ) ,  where A , A ' , A "  are 
disjoint elements of 92. 

Let ~ be a collection of 2 ~ almost disjoint infinite subsets of to and assume, if 

possible, that no A~ (cr E ~) satisfies the conclusion of the lemma. Then for each 

o- E ]s there exist disjoint A, A' ,  A"  E 92 and [3 < 3' such that 

Ne n ( a  U ( A ' n A , ) U ( A " \ A o ) ) = M e .  

Since there are fewer than 2 ~ choices for (A, A ' ,  A",  [3) there must exist distinct 

or, ~" E 1s for which the same choice may be made. In particular, we shall have 

(2) No n ( a ' n A ~ ) = M e  n a ' = N o  n ( a ' N  A,) ,  

(3) N o n ( a  "\Ao) = M o O A"  = No n (A " \a ,  ). 

It follows from (2) that 

Me A A ' = N o  n (A '  n A,, n A , ) .  

Since o- n 7 is finite, the intersection ,4, n A, = A~n, is in 92, and so also is 
A ' O  A,,n,. Similarly, it follows from (3) that 

Me nA"=Ne n ( a " n  A.n,). 

Finally, we observe that M e = N o A B ,  where B = A U ( A ' A A ~ n , ) U  
(a" \A, ,n , )  E 92, contradicting (1). 

1E PROPOSITION. There is an algebra 92 of subsets of to, containing the finite 
subsets, and having the Subsequential Completeness Property, but such that for no 
infinite N C to do we have ~ N  = {N n A : A E 92}. 

PROOF. We construct 92 by transfinite induction as the union of an increasing 

family 92, (a  E 2 '~) of subalgebras of ~oJ. We start by taking 920 to consist of all 

finite and all cofinite subsets of to. We enumerate the disjoint sequences in 920 as 
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( A . ( 0 ,  2 ~ ). 

We also enumerate  the infinite subsets of to as N~ (a  ~ 2'~). We choose a subset 

Mo of No which is not of the form No f'l A with A E 9.1o. (In this first case we 

merely ensure that Mo and No\Mo are both infinite.) Before proceeding with the 

rest of the construction, we fix a surjection p : 2 ~ --~ T '  x 2 ~ having the property 

that if p(~) = (7, ~') then 7 /<  ~. 

Now suppose that for each a < 3' we have obtained a subalgebra 9A~ of ~ o  

with [9/~[=max{to,[a[},  an infinite subset M~ of No and an enumeration 

(A.(a, ~)).~,~ (~ E 2 "~) of the disjoint sequences in 9/4. Assume also that 9/~ C 9/8 

for all a < /3  < 7, and that for all a, fl < ~/ we have M~ ~ {N~ N A : A E 9/~ }. 

Let us write (7, ~') for P(7)  and apply 1D with A.  = A.(~/, ~r), 9 /=  U~<,9/~. 

We obtain an infinite subset ~r of to such that, if 9/~ is the algebra generated by 9/ 

and U . s , A . ,  we have 

Ms # N,  n A for all A E 9/, and all fl < 3'. 

We fix an enumeration (A.(~/, ~:)) (~: ~ 2  ~) of the disjoint sequences in 9/, and 

choose a subset M, of N, that is not of the form N,  n A with A E 95[,. Such a 

choice is possible, since by hypothesis and construction we have [9 / , [=  

max{~o,[y[} < 2 ~ . 

Finally, we put 9 /=  U {9/~ : a  E 2 ̀o } and have to check two properties of 9/. 

Firstly, note that if N is an infinite subset of oJ then N = N~ for some 3~ E 2 ~ and 

that by construction there is no A E 9/wi th  N~ n A = M~. Now let (A, )  be a 

disjoint sequence in 9/. Since 2 ~ is not cofinal with to, there exists a E 2 ~ such 

that each A,  is in 9/4, and so (A.)  = (A, (a, ~:)) for some ~ E 2% If Y is an ordinal 

with P(30 = (a, ~:) then there is an infinite subset ~r of to such that U , ~ , , A ,  E 

9/~. Thus 9/ has the Subsequential Completeness Property. 

1F THEOREm. There is an infinite compact space S such that ~(S)  is a 

Grothendieck space with no subspace isomorphic to L. 

PROOF. We take S to be the Stone space of the algebra 9 /cons t ruc ted  in 

Proposition 1E. So S is totally disconnected and 9/(S) can be identified with 9/; 

~ ( S )  is thus a Grothendieck space by Proposition lB. Also, since 9/C ~oJ and 

{n} is in 9/ for all n E to, we see that oJ can be identified with a dense open 

subset of S. Now if B, C are subsets of ~o and the closures B, C, taken in S, are 

disjoint, there exists an open and closed U C_ S with/~ _C U, U t') t~ = ~ .  Hence,  

there exists A ~ 9/with B C_ A, A N C = ~ .  Thus, by the properties of 9/, there 

does not exist an infinite subset N of o~ such that ~ / a n d  (N - M) are disjoint for 

all M C N. So l| does not embed in q~(S) by Proposition 1C. 
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As mentioned before, the Continuum Hypothesis example given by Talagrand 

[11] has the stronger property of not containing l~(to~). I am grateful to Spiros 

Argyros, who pointed out that this definitely is not the case for the example 

given here. 

Recall that a family ( A . ) ~ .  in a Boolean algebra is said to be independent if 

for every pair of disjoint finite subsets F, G of ~" the intersection n , e ~ A ~  o 

AoEGA~ is non-trivial. (A~ denotes the complement of A~.) If S is the Stone 

space of 91, then 91 has an independent family of cardinality r if and only if S 

allows a continuous surjection onto { - 1, 1} ", which is if and only if L(K) embeds 
isometrically in cd(S). 

1G PROPOSITION (Argyros). If 91 is an infinite Boolean algebra with the 
Subsequential Completeness Property then 9I contains an uncountable independent 
family. 

ProoF. It is easy to see that we can find in 91 a disjoint sequence (A.).~,~ 

such that each A,  contains the members of an independent sequence (A~j). The 

independent family we construct will consist of elements of the form V .~MA.,,(.) 

for suitable infinite subsets M of to and maps 4' : M---> to. The construction of a 

family of pairs (M~, 4'~ ) ~ . ,  proceeds by transfinite induction. 

Suppose that 3' is a countable ordinal and that M~, 4,. (a < 3') have been 
obtained already. Assume also that, for all a < % the supremum B~ = 
V.~m A,,, .(.) exists in 9I, and that, for all a < /3  < y, the sets M~\M~ and 

{ n E M~ : 4,~ (n) <- 4,~ (n)} are both finite. First we choose an infinite N C to such 

that N\M~ is finite for all a < y, and then, by a standard diagonalization 

argument, a function r :N---> to such that ~b(n) is eventually greater than each 

4,~ (n). We now use the SCP to obtain an infinite .Mr, C N such that V. ~ ,  A ,~,(n) 

exists in 91, and set 4,~ = r 

We now show that (B~)~,,~, is independent. Let F, G be disjoint finite subsets 

of to~ and choose n E to such that n is in each M~ (a E F 13 G)  and such that, 

moreover, the integers $o(n)  (or E F13 G)  are distinct. For each a we have 

A.  n / 3 .  = A.., .( .) ,  so that the intersection A ~ F B ~  n n ~ e 6 B ~  is non-empty, 
by the independence of (A.4). 

2. Bounding subsets 

Some of the ideas used in the construction just given can be employed to give 

a counterexample to a conjecture of Dineen and Schottenloher about holomor- 

phic functions on Banach spaces. If X is a (complex) Banach space and B is a 
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subset of X we say that B is bounding (in X) if every holomorphic function 

f : X ---> C is bounded on B. In any weakly compactly generated Banach space the 

bounding subsets are exactly the relatively compact sets, but Dineen showed in 

[2] that the unit vectors e. form a bounding subset of L.  It was conjectured [8] 

that a Banach space contains a bounding subset which is not relatively compact if 

and only if it has a subspace isomorphic to L.  

To give a counterexample to this, we introduce a piece of ad hoc terminology 

for a property of certain subspaces of l~. 

2A DEFINITION. Let A denote the set of all pairs (K, A) where K is an infinite 

subset of to and 

h : ~K--'> 1~;. F ~ A  ~ 

while, for all x E X, 

[A., (x) I"", --,0 

Dineen showed how to obtain an infinite 

having the property that, for all l, 

a s  j ---> oo. 

subset K ={k(1),k(2),. . .} of oJ 

sup A., , , (y) c~ = .. 
y Eball I~(CI) 

In the above expression, G = {k(1) ,- . . ,  k(/)}, C~- = K \ G ,  and, for an n-linear 

form A, [[A(y)"-'llc ~ denotes the norm of the r-linear form 

is a function satisfying 

(i) JAF,={01 ( n ~ F ) ,  

(n ~ F), 
(ii) h~=  h ,  ~ whenever F tq [0, n] = G Iq [0, n]. 

We shall say that a subspace X of Is has Property (A) if X contains the unit 

vectors e. = (0 , . . . ,  0, 1, 0 , - . .  ) and if, for every (K, A)E  A, there is an infinite 

subset J of K with h ~ ~ X. 

2B PROPOSITION. If X is a subspace of 1| and has Property (A) then the unit 
vectors e. form a bounding subset of X. 

PROOF. We shall be content to indicate the way in which Dineen's proof from 

[2] really does establish this result. If the unit vectors do not form a bounding 

subset then, without loss of generality, there exists a sequence of integers 

nl < n2 < �9 �9 �9 and bounded symmetric n~-linear forms A.j on X such that 

A. , ( e j )=A. j ( e , . . . ,  ej) = 1, 
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z ~ A ( y , - . . ,  y, z , . . . ,  z) on X O l| 

The remainder of Dineen's proof involves obtaining, by an inductive process, 

complex numbers it~ with litkf = 1 (k E K),  in such a way that, if we write 

, _ I A ,  if j ~ K n [ O , k ( l ) ] ,  
A j -  0 if not, 

I .  

we have fi,,~,,~(A~)= > 1 for all /. 

The complicated inequality above assures us that 

A,,,,,(z) >= 1 -  1/nk~,)! 

whenever z ball(X n l~(K)) and zj = Aj for j E K n [0, k(l)]. Thus, if we knew 

that the sequence A K given by 

K) 

was in our space X, we should have a contradiction, since lim supj_~ ,4,, (A K) 

would be at least 1. 

Of course, & K need not be in X, but the property of K which is used is 

inherited by all its infinite subsets and so the construction of the it 's could have 

equally well been carried out starting with any infinite J C K. The inductive 

process is such that the choice at the kth  stage depends only on J O [0, k], so that 

we have, in fact, got an element (K, it) of A. Property (A) now tells us that X 

contains some it ~, which is what we want. 

2C PROPOSITION. There is an algebra 92 of subsets of to, such that the closed 

linear span X~ of {1A : A E 92} in l~ has Property (A), but such that for no infinite 
NCto  do we have ~ N = { N A A  :A E92}. 

PROOf. Enumerate the elements of A as (Ks, its) (a ~ 2 ~') and the infinite 

subsets of to as N~ (a ~ 2~). Let 92o consist of all finite and all cofinite subsets of 

to and perform an inductive construction. 

Suppose that for each a < 3' we have obtained a subalgebra 92~ of to with 

192s I = max{to, Io, I} and an infinite subset M, of N~. Suppose further that the 

following hold: 

(i) 92~ C 92~ for t~ </3  < 3'; 
(ii) for a l l a < 3 '  there i s a J ,  CKs such that it~oEX~t .... ; 

(iii) for all a,/3 < 3" we have Ms ~ {Ns N B : B E 92~ }. 

As in Proposition 1E, in the case where 3" is a limit ordinal, we put 
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92, = U~ <~ 92~, and note that 192~ I is as required. We have to do some work only 
when Y =/3 + 1. 

For each a < 3' we know that M~ is not expressible as A O Na with A E 9~. 
Hence, in fact, for each a </3 and each A E 9~, M,A(A n N~) is infinite. 

By considering 2 ~ almost disjoint infinite subsets of K~ we can show there 
exists an infinite J~ C K~ such that for no a </3, A E 91~ does J~ contain 
M,a(A O Na). Now let ~ be a countable algebra of subsets of J~ such that 
A J/3 E X,~. Define 9~+, to be the algebra generated by 92~ U C0. 

If B is in 9~a+, and a </3, then (B O N~)\Jo is equal to (A n N~)\J~ for 
suitable A ~ ~a, and hence cannot equal M~\J~, since J~ did not contain 
M~a(A n N~). Note also that, since lgl~ I = max{~o,I/3 1 } and l ~  ~ I=ta, we have 
I ~ + ,  I = max(~', I/3 I} as required. To finish the induction, we choose a subset M~ 
of Na which is not of the form A n N~ with A E ~~§ 

2D THEOREM. There is a compact space T such that cg (T) does not contain L 
but does have a bounding subset which is not relatively compact. 

PROOF. We take T to be the Stone space of the algebra constructed in 

Proposition 2C, so that qC(T) can be identified with Xa. The assertions follow 
from the preceding work and 1C. 
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