A NON-REFLEXIVE GROTHENDIECK SPACE THAT DOES NOT CONTAIN l_{∞}

BY

RICHARD HAYDON

ABSTRACT

A compact space S is constructed such that, in the dual Banach space $\mathscr{C}(S)^*$, every weak* convergent sequence is weakly convergent, while $\mathscr{C}(S)$ does not have a subspace isomorphic to l_x . The construction introduces a weak version of completeness for Boolean algebras, here called the Subsequential Completeness Property. A related construction leads to a counterexample to a conjecture about holomorphic functions on Banach spaces. A compact space T is constructed such that $\mathscr{C}(T)$ does not contain l_x but does have a "bounding" subset that is not relatively compact. The first of the examples was presented at the International Conference on Banach spaces, Kent, Ohio, 1979.

1. A Grothendieck space

A Banach space X is called a Grothendieck space if every weak^{*} convergent sequence in the dual space X^* is also weakly convergent. The best known examples of non-reflexive Grothendieck spaces are the spaces $\mathscr{C}(S)$, where S is compact and extremally disconnected, or, more generally, where S is an F-space [9]. It is known that such spaces $\mathscr{C}(S)$ contain isometric copies of l_{∞} (subject to the Continuum Hypothesis, in the case of F-spaces), and the question has been raised (for instance, on page 180 of [1]) of whether every non-reflexive Grothendieck space has a subspace isomorphic to l_{∞} . The construction given here shows that this is not the case. Since the space constructed is of the type $\mathscr{C}(S)$, with S compact, it also answers negatively a question posed by Pelczyński (see also page 201 of [5]), whether every $\mathscr{C}(S)$ space necessarily contains either l_{∞} or a complemented c_0 . A different counterexample to these conjectures has been found independently by M. Talagrand [11]. His construction depends on the Continuum Hypothesis, but the Grothendieck space $\mathscr{C}(T)$ which he obtains has the stronger property that it does not have l_{∞} as a quotient (or, equivalently, thanks to CH, that it does not contain $l_1(\omega_1)$ as a subspace).

Received October 9, 1980 and in revised form February 15, 1981

The space S which we construct here will be obtained as the Stone space of a certain Boolean subalgebra \mathfrak{A} of $\mathscr{P}\omega$, the algebra of all subsets of the natural numbers. An account of the relationship between Boolean algebras and their Stone spaces may be found in §16 of [10], for example. However, it may be worth remarking that, once our subalgebra \mathfrak{A} of $\mathscr{P}\omega$ has been constructed, the Banach space we are interested in has a concrete realization, since $\mathscr{C}(S)$ can be identified with the closed linear span in l_{∞} of the indicator functions of the elements of \mathfrak{A} . When we are thinking of it in this way, we shall denote this space by $X_{\mathfrak{A}}$. We now start by introducing a piece of terminology for what will turn out to be the crucial property of our algebra.

1A DEFINITION. We say that a Boolean algebra \mathfrak{A} has the Subsequential Completeness Property if, whenever $(A_n)_{n \in \omega}$ is a disjoint sequence in \mathfrak{A} , there is an infinite subset M of ω such that $(A_m)_{m \in M}$ has a least upper bound in \mathfrak{A} .

In the case where $\mathfrak{A} = \mathfrak{A}(S)$, the algebra of all open and closed subsets of a totally disconnected compact space S (equivalent to saying that S is the Stone space of \mathfrak{A}), the above property means that whenever (A_n) is a disjoint sequence of open and closed sets, there is an infinite subset M of ω such that the closure of $\bigcup_{m \in M} A_m$ is open in S.

1B PROPOSITION. Let S be a totally disconnected compact space. If the algebra $\mathfrak{A}(S)$ has the SCP then $\mathscr{C}(S)$ is a Grothendieck space.

PROOF. Let (μ_n) be a weak* null sequence in $\mathscr{C}(S)^*$. We have to show that $R = \{\mu_n : n \in \omega\}$ is weakly relatively compact, and to do this it will suffice to prove that if $(A_m)_{m \in \omega}$ is a disjoint sequence in $\mathfrak{A}(S)$ then $\mu(A_m) \to 0$ uniformly over $\mu \in R$. (This version of the criterion for weak compactness may be found, for instance, as Theorem 83C of [3].)

So let us suppose that (A_m) is a disjoint sequence in $\mathfrak{A}(S)$ and that $\mu_n(A_n) \ge \delta > 0$ for all *n*. We may also suppose, by Rosenthal's Lemma ([5], or page 18 of [1]), that for all *n*

$$|\mu_n|(\bigcup \{A_m: n \neq m \in \omega\}) < \frac{1}{2}\delta.$$

Now let $(\sigma(\alpha))_{\alpha \in \omega_1}$ be an uncountable almost disjoint family of subsets of ω . (Recall that "almost disjoint" means that $\sigma(\alpha) \cap \sigma(\beta)$ is finite whenever $\alpha \neq \beta$.) For each α , choose an infinite subset $\tau(\alpha)$ of $\sigma(\alpha)$ such that the closure of $\bigcup_{n \in \tau(\alpha)} A_n$ is open; call these closures B_{α} . Then the sets $C_{\alpha} = B_{\alpha} \setminus \bigcup_{n \in \tau(\alpha)} A_n$ are pairwise disjoint, and so there exists an α such that $|\mu_n|(C_{\alpha}) = 0$ for all $n \in \omega$. We now see that for all $n \in \tau(\alpha)$

$$\langle \mu_n, 1_{B_\alpha} \rangle = \mu_n \Big(C_\alpha \cup \bigcup_{n \in \tau(\alpha)} A_n \Big) > \frac{1}{2} \delta,$$

contradicting the assumption that $\mu_n \rightarrow 0$ in the weak* topology.

REMARK. The Grothendieck Property for Boolean algebras has been considered by a number of authors, who have also looked at other measure-theoretical properties in this context. A survey of this material can be found in [7]. With a little more work, one can show that a Boolean algebra with the SCP also enjoys the so-called "Vitali-Hahn-Saks Property".

1C PROPOSITION. Let S be compact and suppose that l_{∞} embeds isomorphically in $\mathscr{C}(S)$. Then there is an infinite subset N of S such that $\overline{L} \cap \overline{M} = \emptyset$ whenever L, M are disjoint subsets of N. If T is a dense subset of S we may choose N to be contained in T.

PROOF. The proof is almost entirely based on ideas from Rosenthal's paper [6]. Let $u: l_x \to \mathscr{C}(S)$ be an embedding and assume that for all $\xi \in l_\infty$ we have $\|\xi\| \le \|u\xi\| \le K \|\xi\|$.

For each $n \in \omega$ choose $s_n \in T$ such that $|(ue_n)(s_n)| \ge 1$, e_n denoting the usual unit vector in l_{∞} . Consider the elements $\nu_n = u^*(\delta(s_n))$ of $(l_{\infty})^*$ as finitely additive measures on ω . By an application of Rosenthal's Lemma, there exists an infinite subset D of ω such that, for all $n \in D$, $|\nu_n|(D \setminus \{n\}) < \frac{1}{3}$. Put $N = \{s_n : n \in D\}$ and let $M = \{s_n : n \in C\}$ be any subset of N. Consider $f_C = u(1_C) \in \mathscr{C}(S)$. We have

$$f_C(s_n) = \begin{cases} (ue_n)(s_n) + \nu_n(C_n \setminus \{n\}) & \text{if } n \in C, \\ \\ \nu_n(C) & \text{if } n \notin C. \end{cases}$$

Thus, $|f_C(s_n)| > \frac{2}{3}$ if $n \in C$ and $|f_C(s_n)| < \frac{1}{3}$ if $n \notin C$. This assures us that $\overline{M} \cap (\overline{N \setminus M}) = \emptyset$.

REMARK. The above Proposition shows that a necessary condition for l_{∞} to embed in $\mathscr{C}(S)$ is that S should have a subset homeomorphic to $\beta\omega$, the Stone-Čech compactification of the natural numbers. For if N is the subset of S constructed above, all indicator functions 1_M ($M \subseteq N$) extend to continuous functions on S, and hence \overline{N} is homeomorphic to $\beta\omega$. That this condition is not sufficient may be seen by taking $S = \{-1, 1\}^{2^{\omega}}$ and applying Hagler's results on subspaces of $\mathscr{C}(S)$ where S is dyadic [4].

We now come to the construction of our Boolean algebra, which will be achieved by transfinite induction, employing the following lemma. The author is grateful to the referee for suggesting a simplified proof. 1D LEMMA. Let $\gamma < 2^{\omega}$ be an ordinal and \mathfrak{A} be a Boolean subalgebra of $\mathscr{P}\omega$ with $|\mathfrak{A}| \leq |\gamma|$. Assume further that there is a family $(M_{\beta}, N_{\beta})_{\beta < \gamma}$ of pairs of subsets of ω , with $M_{\beta} \subset N_{\beta}$ for all β , such that

(1)
$$M_{\beta} \neq N_{\beta} \cap A$$
 for all $A \in \mathfrak{A}, \beta < \gamma$.

Then, given any disjoint sequence $(A_n)_{n\in\omega}$ in \mathfrak{A} , there is an infinite subset σ of ω such that $M_\beta \neq N_\beta \cap A$ for all $\beta < \gamma$ and all A in the algebra \mathfrak{A}_σ generated by \mathfrak{A} and $A_\sigma = \bigcup_{n\in\sigma} A_n$.

PROOF. Note first that, for each set B, the elements of the algebra generated by \mathfrak{A} and B have the form $A \cup (A' \cap B) \cup (A'' \setminus B)$, where A, A', A'' are disjoint elements of \mathfrak{A} .

Let Σ be a collection of 2^{ω} almost disjoint infinite subsets of ω and assume, if possible, that no A_{σ} ($\sigma \in \Sigma$) satisfies the conclusion of the lemma. Then for each $\sigma \in \Sigma$ there exist disjoint $A, A', A'' \in \mathfrak{A}$ and $\beta < \gamma$ such that

$$N_{\beta} \cap (A \cup (A' \cap A_{\sigma}) \cup (A'' \setminus A_{\sigma})) = M_{\beta}.$$

Since there are fewer than 2^{ω} choices for (A, A', A'', β) there must exist distinct $\sigma, \tau \in \Sigma$ for which the same choice may be made. In particular, we shall have

(2)
$$N_{\beta} \cap (A' \cap A_{\sigma}) = M_{\beta} \cap A' = N_{\beta} \cap (A' \cap A_{\tau}),$$

$$(3) N_{\beta} \cap (A'' \backslash A_{\sigma}) = M_{\beta} \cap A'' = N_{\beta} \cap (A'' \backslash A_{\tau}).$$

It follows from (2) that

$$M_{\beta} \cap A' = N_{\beta} \cap (A' \cap A_{\sigma} \cap A_{\tau}).$$

Since $\sigma \cap \tau$ is finite, the intersection $A_{\sigma} \cap A_{\tau} = A_{\sigma \cap \tau}$ is in \mathfrak{A} , and so also is $A' \cap A_{\sigma \cap \tau}$. Similarly, it follows from (3) that

$$M_{\beta} \cap A'' = N_{\beta} \cap (A'' \cap A_{\sigma \cap \tau}).$$

Finally, we observe that $M_{\beta} = N_{\beta} \cap B$, where $B = A \cup (A' \cap A_{\sigma \cap \tau}) \cup (A'' \setminus A_{\sigma \cap \tau}) \in \mathfrak{A}$, contradicting (1).

1E PROPOSITION. There is an algebra \mathfrak{A} of subsets of ω , containing the finite subsets, and having the Subsequential Completeness Property, but such that for no infinite $N \subset \omega$ do we have $\mathcal{P}N = \{N \cap A : A \in \mathfrak{A}\}$.

PROOF. We construct \mathfrak{A} by transfinite induction as the union of an increasing family \mathfrak{A}_{α} ($\alpha \in 2^{\omega}$) of subalgebras of $\mathscr{P}\omega$. We start by taking \mathfrak{A}_0 to consist of all finite and all cofinite subsets of ω . We enumerate the disjoint sequences in \mathfrak{A}_0 as

$$(A_n(0,\zeta))_{n\in\omega}$$
 $(\zeta\in 2^{\omega}).$

We also enumerate the infinite subsets of ω as N_{α} ($\alpha \in 2^{\omega}$). We choose a subset M_0 of N_0 which is not of the form $N_0 \cap A$ with $A \in \mathfrak{A}_0$. (In this first case we merely ensure that M_0 and $N_0 \setminus M_0$ are both infinite.) Before proceeding with the rest of the construction, we fix a surjection $\rho : 2^{\omega} \to 2^{\omega} \times 2^{\omega}$ having the property that if $\rho(\xi) = (\eta, \zeta)$ then $\eta < \xi$.

Now suppose that for each $\alpha < \gamma$ we have obtained a subalgebra \mathfrak{A}_{α} of $\mathscr{P}\omega$ with $|\mathfrak{A}_{\alpha}| = \max\{\omega, |\alpha|\}$, an infinite subset M_{α} of N_{α} and an enumeration $(A_n(\alpha, \xi))_{n \in \omega}$ ($\xi \in 2^{\omega}$) of the disjoint sequences in \mathfrak{A}_{α} . Assume also that $\mathfrak{A}_{\alpha} \subset \mathfrak{A}_{\beta}$ for all $\alpha < \beta < \gamma$, and that for all $\alpha, \beta < \gamma$ we have $M_{\beta} \notin \{N_{\beta} \cap A : A \in \mathfrak{A}_{\alpha}\}$.

Let us write (η, ζ) for $\rho(\gamma)$ and apply 1D with $A_n = A_n(\eta, \zeta)$, $\mathfrak{A} = \bigcup_{\beta < \gamma} \mathfrak{A}_{\beta}$. We obtain an infinite subset σ of ω such that, if \mathfrak{A}_{γ} is the algebra generated by \mathfrak{A} and $\bigcup_{n \in \sigma} A_n$, we have

$$M_{\beta} \neq N_{\beta} \cap A$$
 for all $A \in \mathfrak{A}_{\gamma}$ and all $\beta < \gamma$.

We fix an enumeration $(A_n(\gamma, \xi))$ $(\xi \in 2^{\omega})$ of the disjoint sequences in \mathfrak{A}_{γ} and choose a subset M_{γ} of N_{γ} that is not of the form $N_{\gamma} \cap A$ with $A \in \mathfrak{A}_{\gamma}$. Such a choice is possible, since by hypothesis and construction we have $|\mathfrak{A}_{\gamma}| = \max\{\omega, |\gamma|\} < 2^{\omega}$.

Finally, we put $\mathfrak{A} = \bigcup {\mathfrak{A}_{\alpha} : \alpha \in 2^{\omega}}$ and have to check two properties of \mathfrak{A} . Firstly, note that if N is an infinite subset of ω then $N = N_{\gamma}$ for some $\gamma \in 2^{\omega}$ and that by construction there is no $A \in \mathfrak{A}$ with $N_{\gamma} \cap A = M_{\gamma}$. Now let (A_n) be a disjoint sequence in \mathfrak{A} . Since 2^{ω} is not cofinal with ω , there exists $\alpha \in 2^{\omega}$ such that each A_n is in \mathfrak{A}_{α} , and so $(A_n) = (A_n(\alpha, \xi))$ for some $\xi \in 2^{\omega}$. If γ is an ordinal with $\rho(\gamma) = (\alpha, \xi)$ then there is an infinite subset σ of ω such that $\bigcup_{n \in \sigma} A_n \in \mathfrak{A}_{\gamma}$. Thus \mathfrak{A} has the Subsequential Completeness Property.

1F THEOREM. There is an infinite compact space S such that $\mathscr{C}(S)$ is a Grothendieck space with no subspace isomorphic to l_{∞} .

PROOF. We take S to be the Stone space of the algebra \mathfrak{A} constructed in Proposition 1E. So S is totally disconnected and $\mathfrak{A}(S)$ can be identified with \mathfrak{A} ; $\mathscr{C}(S)$ is thus a Grothendieck space by Proposition 1B. Also, since $\mathfrak{A} \subset \mathscr{P}\omega$ and $\{n\}$ is in \mathfrak{A} for all $n \in \omega$, we see that ω can be identified with a dense open subset of S. Now if B, C are subsets of ω and the closures $\overline{B}, \overline{C}$, taken in S, are disjoint, there exists an open and closed $U \subseteq S$ with $\overline{B} \subseteq U, U \cap \overline{C} = \emptyset$. Hence, there exists $A \in \mathfrak{A}$ with $B \subseteq A, A \cap C = \emptyset$. Thus, by the properties of \mathfrak{A} , there does not exist an infinite subset N of ω such that \overline{M} and $(\overline{N-M})$ are disjoint for all $M \subset N$. So l_{∞} does not embed in $\mathscr{C}(S)$ by Proposition 1C. As mentioned before, the Continuum Hypothesis example given by Talagrand [11] has the stronger property of not containing $l_i(\omega_1)$. I am grateful to Spiros Argyros, who pointed out that this definitely is not the case for the example given here.

Recall that a family $(A_{\alpha})_{\alpha \in \tau}$ in a Boolean algebra is said to be *independent* if for every pair of disjoint finite subsets F, G of τ the intersection $\bigcap_{\alpha \in F} A_{\alpha} \cap \bigcap_{\beta \in G} A_{\beta}^{c}$ is non-trivial. $(A_{\beta}^{c}$ denotes the complement of A_{β} .) If S is the Stone space of \mathfrak{A} , then \mathfrak{A} has an independent family of cardinality κ if and only if S allows a continuous surjection onto $\{-1, 1\}^{\kappa}$, which is if and only if $l_{1}(\kappa)$ embeds isometrically in $\mathscr{C}(S)$.

1G PROPOSITION (Argyros). If \mathfrak{A} is an infinite Boolean algebra with the Subsequential Completeness Property then \mathfrak{A} contains an uncountable independent family.

PROOF. It is easy to see that we can find in \mathfrak{A} a disjoint sequence $(A_n)_{n \in \omega}$ such that each A_n contains the members of an independent sequence $(A_{n,j})$. The independent family we construct will consist of elements of the form $\bigvee_{n \in M} A_{n,\phi(n)}$ for suitable infinite subsets M of ω and maps $\phi : M \to \omega$. The construction of a family of pairs $(M_{\alpha}, \phi_{\alpha})_{\alpha \in \omega_1}$ proceeds by transfinite induction.

Suppose that γ is a countable ordinal and that M_{α} , ϕ_{α} ($\alpha < \gamma$) have been obtained already. Assume also that, for all $\alpha < \gamma$, the supremum $B_{\alpha} = \bigvee_{n \in M_{\alpha}} A_{n,\phi_{\alpha}(n)}$ exists in \mathfrak{A} , and that, for all $\alpha < \beta < \gamma$, the sets $M_{\beta} \setminus M_{\alpha}$ and $\{n \in M_{\beta} : \phi_{\beta}(n) \leq \phi_{\alpha}(n)\}$ are both finite. First we choose an infinite $N \subset \omega$ such that $N \setminus M_{\alpha}$ is finite for all $\alpha < \gamma$, and then, by a standard diagonalization argument, a function $\psi : N \to \omega$ such that $\psi(n)$ is eventually greater than each $\phi_{\alpha}(n)$. We now use the SCP to obtain an infinite $M_{\gamma} \subset N$ such that $\bigvee_{n \in M_{\gamma}} A_{n,\psi(n)}$ exists in \mathfrak{A} , and set $\phi_{\gamma} = \psi|_{M}$.

We now show that $(B_{\alpha})_{\alpha \in \omega_1}$ is independent. Let F, G be disjoint finite subsets of ω_1 and choose $n \in \omega$ such that n is in each M_{α} ($\alpha \in F \cup G$) and such that, moreover, the integers $\phi_{\alpha}(n)$ ($\alpha \in F \cup G$) are distinct. For each α we have $A_n \cap B_{\alpha} = A_{n,\phi_{\alpha}(n)}$, so that the intersection $\bigcap_{\alpha \in F} B_{\alpha} \cap \bigcap_{\beta \in G} B_{\beta}^c$ is non-empty, by the independence of $(A_{n,j})$.

2. Bounding subsets

Some of the ideas used in the construction just given can be employed to give a counterexample to a conjecture of Dineen and Schottenloher about holomorphic functions on Banach spaces. If X is a (complex) Banach space and B is a

subset of X we say that B is *bounding* (in X) if every holomorphic function $f: X \to \mathbb{C}$ is bounded on B. In any weakly compactly generated Banach space the bounding subsets are exactly the relatively compact sets, but Dineen showed in [2] that the unit vectors e_n form a bounding subset of l_{∞} . It was conjectured [8] that a Banach space contains a bounding subset which is not relatively compact if and only if it has a subspace isomorphic to l_{∞} .

To give a counterexample to this, we introduce a piece of ad hoc terminology for a property of certain subspaces of l_{∞} .

2A DEFINITION. Let Λ denote the set of all pairs (K, λ) where K is an infinite subset of ω and

$$\lambda: \mathcal{P}K \to l_{\infty}; \qquad F \mapsto \lambda^F$$

is a function satisfying

(i)
$$|\lambda_n^F| = \begin{cases} 0 & (n \notin F), \\ 1 & (n \in F), \end{cases}$$

(ii) $\lambda_n^F = \lambda_n^G$ whenever $F \cap [0, n] = G \cap [0, n]$.

We shall say that a subspace X of l_{∞} has *Property* (Λ) if X contains the unit vectors $e_n = (0, \dots, 0, 1, 0, \dots)$ and if, for every $(K, \lambda) \in \Lambda$, there is an infinite subset J of K with $\lambda^J \in X$.

2B PROPOSITION. If X is a subspace of l_{∞} and has Property (A) then the unit vectors e_n form a bounding subset of X.

PROOF. We shall be content to indicate the way in which Dineen's proof from [2] really does establish this result. If the unit vectors do not form a bounding subset then, without loss of generality, there exists a sequence of integers $n_1 < n_2 < \cdots$ and bounded symmetric n_i -linear forms A_{n_i} on X such that

$$\hat{A}_{n_j}(e_j) = A_{n_j}(e_j, \cdots, e_j) = 1,$$

while, for all $x \in X$,

$$|\hat{A}_{n_i}(\mathbf{x})|^{1/n_j} \rightarrow 0$$
 as $j \rightarrow \infty$.

Dincen showed how to obtain an infinite subset $K = \{k(1), k(2), \dots\}$ of ω having the property that, for all l,

$$\sup_{y \in \text{ball } I_{\omega}(C_l)} \sum_{r} \binom{n_{k(l)}}{r} \|A_{n_{k(l)}}(y)^{n_{k(l)-r}}\|_{C^{\frac{1}{2}}} \leq 1/n_{k(l)}!.$$

In the above expression, $C_i = \{k(1), \dots, k(l)\}, C_i^{\perp} = K \setminus C_i$, and, for an *n*-linear form A, $||A(y)^{n-r}||_{C_i^{\perp}}$ denotes the norm of the *r*-linear form

$$z \mapsto A(y, \cdots, y, z, \cdots, z)$$
 on $X \cap l_{\infty}(C_{l}^{\perp})$.

The remainder of Dineen's proof involves obtaining, by an inductive process, complex numbers λ_k with $|\lambda_k| = 1$ ($k \in K$), in such a way that, if we write

$$\lambda_{j}^{\prime} = \begin{cases} \lambda_{j} & \text{if } j \in K \cap [0, k(l)], \\ 0 & \text{if not,} \end{cases}$$

we have $\hat{A}_{n_{k(l)}}(\lambda^{l}) \ge 1$ for all l.

The complicated inequality above assures us that

$$\hat{A}_{n_{k(l)}}(z) \ge 1 - 1/n_{k(l)}!$$

whenever z ball($X \cap l_{\infty}(K)$) and $z_j = \lambda_j$ for $j \in K \cap [0, k(l)]$. Thus, if we knew that the sequence λ^{κ} given by

$$\lambda_{j}^{\kappa} = \begin{cases} \lambda_{j} & (j \in K) \\ 0 & (j \notin K) \end{cases}$$

was in our space X, we should have a contradiction, since $\limsup_{j\to\infty} \hat{A}_{n_j}(\lambda^{\kappa})$ would be at least 1.

Of course, λ^{κ} need not be in X, but the property of K which is used is inherited by all its infinite subsets and so the construction of the λ 's could have equally well been carried out starting with any infinite $J \subset K$. The inductive process is such that the choice at the k th stage depends only on $J \cap [0, k]$, so that we have, in fact, got an element (K, λ) of Λ . Property (Λ) now tells us that X contains some λ^{J} , which is what we want.

2C PROPOSITION. There is an algebra \mathfrak{A} of subsets of ω , such that the closed linear span $X_{\mathfrak{A}}$ of $\{1_A : A \in \mathfrak{A}\}$ in l_{ω} has Property (Λ), but such that for no infinite $N \subset \omega$ do we have $\mathfrak{S}N = \{N \cap A : A \in \mathfrak{A}\}.$

PROOF. Enumerate the elements of Λ as $(K_{\alpha}, \lambda_{\alpha})$ ($\alpha \in 2^{\omega}$) and the infinite subsets of ω as N_{α} ($\alpha \in 2^{\omega}$). Let \mathfrak{A}_{0} consist of all finite and all cofinite subsets of ω and perform an inductive construction.

Suppose that for each $\alpha < \gamma$ we have obtained a subalgebra \mathfrak{A}_{α} of ω with $|\mathfrak{A}_{\alpha}| = \max\{\omega, |\alpha|\}$ and an infinite subset M_{α} of N_{α} . Suppose further that the following hold:

(i) $\mathfrak{A}_{\alpha} \subset \mathfrak{A}_{\beta}$ for $\alpha < \beta < \gamma$;

- (ii) for all $\alpha < \gamma$ there is a $J_{\alpha} \subset K_{\alpha}$ such that $\lambda^{J_{\alpha}} \in X_{\mathfrak{A}_{\alpha+1}}$;
- (iii) for all $\alpha, \beta < \gamma$ we have $M_{\alpha} \notin \{N_{\alpha} \cap B : B \in \mathfrak{A}_{\beta}\}$.

As in Proposition 1E, in the case where γ is a limit ordinal, we put

 $\mathfrak{A}_{\gamma} = \bigcup_{\alpha < \gamma} \mathfrak{A}_{\alpha}$, and note that $|\mathfrak{A}_{\gamma}|$ is as required. We have to do some work only when $\gamma = \beta + 1$.

For each $\alpha < \gamma$ we know that M_{α} is not expressible as $A \cap N_{\alpha}$ with $A \in \mathfrak{A}_{\beta}$. Hence, in fact, for each $\alpha < \beta$ and each $A \in \mathfrak{A}_{\beta}$, $M_{\alpha} \Delta(A \cap N_{\alpha})$ is infinite.

By considering 2^{ω} almost disjoint infinite subsets of K_{β} we can show there exists an infinite $J_{\beta} \subset K_{\beta}$ such that for no $\alpha < \beta$, $A \in \mathfrak{A}_{\beta}$ does J_{β} contain $M_{\alpha}^{\ \alpha}(A \cap N_{\alpha})$. Now let \mathfrak{B}_{β} be a countable algebra of subsets of J_{β} such that $\lambda^{\ \beta} \in X_{\mathfrak{B}_{\beta}}$. Define $\mathfrak{A}_{\beta+1}$ to be the algebra generated by $\mathfrak{A}_{\beta} \cup \mathfrak{B}_{\beta}$.

If B is in $\mathfrak{A}_{\beta+1}$ and $\alpha < \beta$, then $(B \cap N_{\alpha}) \setminus J_{\beta}$ is equal to $(A \cap N_{\alpha}) \setminus J_{\beta}$ for suitable $A \in \mathfrak{A}_{\beta}$, and hence cannot equal $M_{\alpha} \setminus J_{\beta}$, since J_{β} did not contain $M_{\alpha}^{\Delta}(A \cap N_{\alpha})$. Note also that, since $|\mathfrak{A}_{\beta}| = \max\{\omega, |\beta|\}$ and $|\mathfrak{B}_{\beta}| = \omega$, we have $|\mathfrak{B}_{\beta+1}| = \max\{\omega, |\beta|\}$ as required. To finish the induction, we choose a subset M_{β} of N_{β} which is not of the form $A \cap N_{\beta}$ with $A \in \mathfrak{A}_{\beta+1}$.

2D THEOREM. There is a compact space T such that $\mathcal{C}(T)$ does not contain l_{∞} but does have a bounding subset which is not relatively compact.

PROOF. We take T to be the Stone space of the algebra constructed in Proposition 2C, so that $\mathscr{C}(T)$ can be identified with $X_{\mathfrak{A}}$. The assertions follow from the preceding work and 1C.

REFERENCES

1. J. Diestel and J. J. Uhl, Vector Measures, American Mathematical Society, Providence, 1977.

2. S. Dineen, Bounding subsets of a Banach space, Math. Ann. 192 (1971), 61-70.

3. D. H. Fremlin, Topological Riesz Spaces and Measure Theory, Cambridge University Press, 1974.

4. J. Hagler, On the structure of S and C(S) for S dyadic, Trans. Amer. Math. Soc. 214 (1975), 415-427.

5. J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces*, Lecture notes in Mathematics 338, Springer, Berlin-Heidelberg-New York, 1973.

6. H. P. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), 13-36.

7. W. Schachermeyer, On some classical measure-theoretical theorems for non-complete Boolean algebras, to appear.

8. M. Schottenloher, Richness of the class of holomorphic functions on an infinite-dimensional space, in Functional Analysis: Surveys and Recent Results (K.-D. Bierstedt and B. Fuchsteiner, eds.), North-Holland, 1977.

9. G. L. Seever, Measures on F-spaces, Trans. Amer. Math. Soc. 133 (1968), 267-280.

10. Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa, 1971.

11. M. Talagrand, Un nouveau C(K) de Grothendieck, to appear.

BRASENOSE COLLEGE OXFORD, ENGLAND 73